

ABSTRACT

Pericola is a next-generation, ambientcondition CO₂ capture material based on nanostructured natural zeolite. It offers a breakthrough approach for carbon capture, transport, and conversion—particularly suited to Japan's innovation-driven, highdensity, and sustainability-focused markets.

Shugo Nakano President Cielo

The Vision:

Buildings that aren't just net-zero, but net-positive — actively improving urban air quality.

Imagine a building that doesn't just stand in a city—it cleans it. Pellicola is a nano-engineered natural zeolite that, when integrated into concrete or building surfaces, transforms entire structures into passive air purifiers.

Unlike conventional materials, Pellicola actively adsorbs CO_2 , VOCs, and nano-sized pollutants from the air. It's fast, reversible, and doesn't rely on complex machinery—just smart design.

Applied as a surface coating, mixed directly into concrete, or embedded in modular panels, Pellicola gives architects and developers a way to turn walls, façades, and interiors into functional, sustainable infrastructure. Cleaner air, healthier cities, smarter buildings.

Ours is a multi-domain innovation: materials science + environmental tech + architecture

Shugo Nakano

President Cielo KK

Pellicola + Concrete =

CO₂-Absorbing Buildings

We've developed a highly advanced, reusable zeolite-based material capable of capturing nano-sized pollutants—including PFAS and CO_2 —far more effectively and simply than current synthetic solutions. Our material performs better, costs less, and aligns with nature's logic rather than trying to out-engineer it.

Basic Concept:

- You **embed Pellicola particles** (the treated natural zeolite) into concrete during mixing or as a surface coating.
- Once cured, the building **passively adsorbs CO₂** from the air through these integrated zeolite structures.
- Unlike raw concrete, Pellicola:
 - Adsorbs CO_2 much faster
 - Holds it **reversibly** (can release if needed)
 - Captures even **nano-scale pollutants** (e.g. VOCs, PFAS, CO₂)

Why It Works Better Than Ordinary Concrete:

Feature	Standard Concrete	Concrete + Pellicola		
CO₂ Reaction Slow & permanent (carbonation) Fast & reversible (adsorption)				
Efficiency	Shallow surface penetration	Nano-structured capture		
Other Toxins	Not effective	Removes VOCs, PFAS, NOx, etc.		
Regeneration	n Not possible	Can be regenerated by heat/pressure		

How to Apply Pellicola in Construction:

1. Bulk Integration:

- Mix Pellicola powder into cement during production.
- Acts like a **functional filler**, providing CO₂-capture properties without altering strength.

2. Surface Coating:

- Spray or brush a Pellicola-rich coating onto interior/exterior walls.
- Creates an **active CO₂-adsorbing façade**.

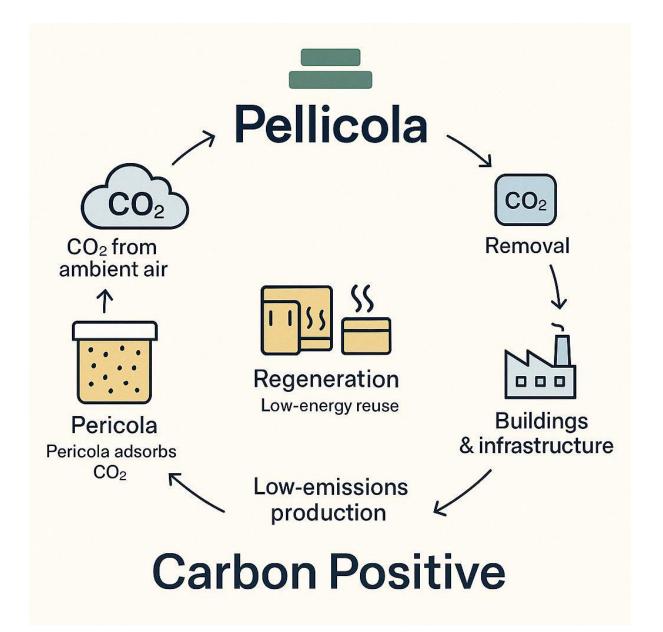
3. Modular Panels:

- Use Pellicola-loaded panels or tiles for **ventilation zones**, **ceilings**, or **wall cladding**.
- Can be designed for **periodic regeneration** in smart buildings.

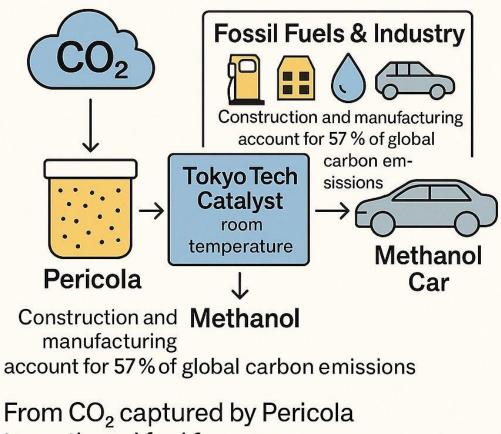
Imagine This—turning buildings into urban air filters.

- A skyscraper becomes a vertical CO₂ sponge.
- It breathes in polluted city air.
- Internally, walls and façades capture CO₂ and toxic gases.
- Smart systems occasionally **"wring out"** the Pellicola via heat or vacuum to release the gas for recycling or sequestration.

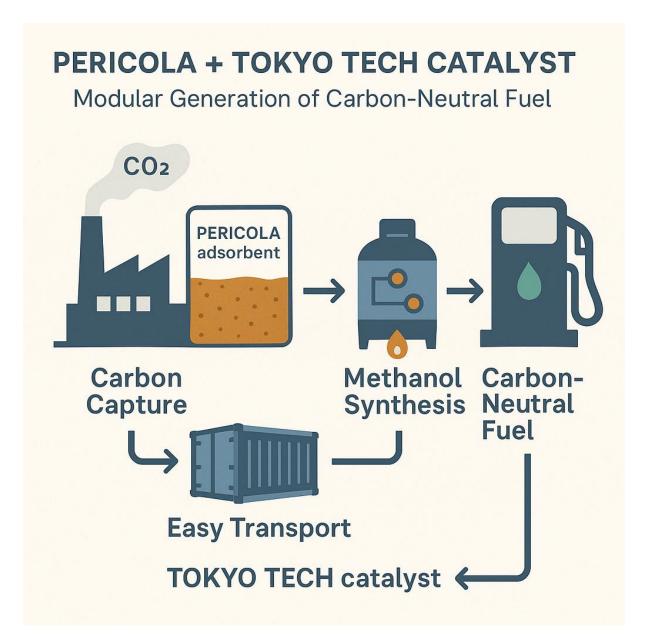
Pellicola vs. Synthetic Zeolites: Key Advantages


Feature	Pellicola (Modified Natural Zeolite)	Synthetic Zeolite
Source	Derived from natural zeolite, eco-friendly base	Fully man-made, energy- intensive production
Nano-structural Tuning	Advanced modification with precise pore control	Often too rigid or optimized for industrial uses
Toxin Range	Adsorbs nano-sized toxins (e.g., PFAS, VOCs, CO ₂)	Limited to larger molecules; poor PFAS capture
Reversibility	Reversible adsorption (desorption with heat/pressure)	Many types are single-use or less efficient
Safety & Stability	No toxic byproducts; naturally stable	Some types may leach aluminum or degrade under stress
Green Building Integration	Easily blends into concrete, coatings, or panels	Rarely used in construction materials
Environmental Footprint	Lower processing energy and sustainable origin	Higher carbon footprint during production
Customization	Tuned specifically for air purification and CO ₂ capture	Typically built for industrial catalysis or detergents
Cost- Effectiveness	Lower long-term cost due to reusability and material cost	Often more expensive for large-scale applications

synthetic zeolites can capture CO_2 under controlled conditions — but for realworld, urban environmental applications like Pellicola aims for, they're less effective and less practical. Pellicola is designed specifically for urban sustainability, not just industrial filtration. Its natural origin + cutting-edge engineering make it ideal for:

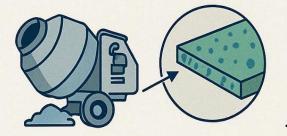

- Green building integration
- Passive carbon capture
- Air quality improvement in urban areas

Technical Summary

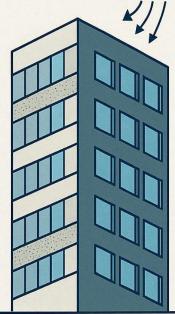

- Mixes with cement to improve the strength and durability of concrete
- ZEB = Zero Emission Building materials
- CO2 Separation and recovery CO
- Clean petrol feedstock
- The most important component of the recovery system is the choice of recovery material
- Amines compounds Liquid Target price JPY 1,500/kg Difficult to achieve
- Organic MOF work frame Solid ibid
- Carbon nanotubes Solids ibid
- Silica gel Solid Low performance
- Room temperature and pressure Separation and recovery Long-term storage possible

From CO₂ Capture to Methanol Fuel for Cars

to methanol fuel for cars

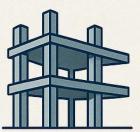


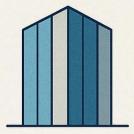
PELLICOLA CO2-ABSORBING MATERIAL


Incorporates natural zeolites as enables the absorption of carbon dioxide directly from the air.

TECHNOLOGY

Additive for Construction Materials


Blended into concrete, panels or coatings for new and existing buildings


CO2

High-capacity zeolite properties bind CO₂ passively at ambient temperature

APPLICATIONS

Carbon-negative cement & concrete

CO₂-sequestering facade coatings

Indoor air purification panels

Pellicola products manufacture:

Carbon-negative cement & concrete